HARVEST
USER'S MANUAL

Darren R. Hardy and Michael F. Schwartz

CU-CS-743-94

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 1994 2. REPORT TYPE 00-11-1994 to 00-11-1994
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Harvest User’'s Manual 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 49
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

///ﬁ,//

ARVE M|

AL
crVE }
Q@ £ O/V

&

HARVEST USER’S MANUAL

Darren R. Hardy, U. Colorado, Boulder
Michael F. Schwartz, U. Colorado, Boulder

Version 1.0

October 1994
Last Revised on November 3, 1994

&

University of Colorado at Boulder

Technical Report CU-CS-743-94
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309

Acknowledgements

Harvest was designed and built by the Internet Research Task Force Research Group on Resource
Discovery (IRTF-RD). IRTF-RD consists of Mic Bowman (Transarc Corp.), Peter Danzig (USC), Udi
Manber (U. Arizona), and Michael Schwartz (IRTF-RD chair, U. Colorado). Darren R. Hardy (U.
Colorado) is a Professional Research Assistant on the project.

Many students have contributed to this project: Rajini Balay, William Camargo, Anawat Chank-
hunthod, Bhavna Chhabra, Gabe Dalbec, Dante De Lucia, Chanda Dharap, Burra Gopal, James Guyton,
Allan Hundhausen, Paul Klark, Shih-Hao Li, Cheng-Che Lue, Dave Merkel, Chuck Neerdaels, John
Noble, John Noll, Katia Obraczka, Mark Peterson, Erh-Yuan Tsai, and Kurt Worrell.

IRTF-RD is supported primarily by the Advanced Research Projects Agency (contract number
DABT63-93-C-0052), with additional support from the Air Force Office of Scientific Research (award
number F49620-93-1-0082), the National Science Foundation (grant numbers CCR-9002351, CCR-9301129,
CDA-8914587, CDA-8914587A02, NCR-9105372, and NCR-9204853), Hughes Aircraft Company (under
NASA EOSDIS project subcontract number ECS-00009), and two equipment grants from Sun Microsys-
tems’ Collaborative Research Program. The information contained in this document does not necessarily
reflect the position or the policy of the U.S. Government or other sponsors of this research. No official
endorsement should be inferred.

Copyright
©1994. All rights reserved.

Mic Bowman of Transarc Corporation.

Peter Danzig of the University of Southern California.

Darren R. Hardy of the University of Colorado at Boulder.
Udi Manber of the University of Arizona.

Michael F. Schwartz of the University of Colorado at Boulder.

This copyright notice applies to all code in Harvest other than subsystems developed elsewhere,
which contain other copyright notices in their source text.

The Harvest software was developed by the Internet Research Task Force Research Group on Re-
source Discovery (IRTF-RD). The Harvest software may be used for academic, research, government,
and internal business purposes without charge. The Harvest software may not be sold or distributed
to commercial clients or partners without explicit permission from the copyright holders.

The Harvest software is provided “as is”, without express or implied warranty, and with no support
nor obligation to assist in its use, correction, modification or enhancement. We assume no liability
with respect to the infringement of copyrights, trade secrets, or any patents, and are not responsible
for consequential damages. Proper use of the Harvest software is entirely the responsibility of the
user.

For those who are using Harvest for non-commercial purposes, you may make derivative works,

subject to the following constraints:

1. You must include the above copyright notice and these accompanying paragraphs in all forms
of derivative works, and any documentation and other materials related to such distribution
and use acknowledge that the software was developed at the above institutions.

2. You must notify IRTF-RD regarding your distribution of the derivative work.

3. You must clearly notify users that your are distributing a modified version and not the original
Harvest software.

4. Any derivative product is also subject to the restrictions of the copyright, including distribution
and use limitations.

Contents

1

2

3

Introduction to Harvest
Subsystem Overview
Getting and Installing the Harvest Software

Making Basic Use of Harvest

4.1 Running a Gatherer e
4.2 Running a Broker. L e e e
4.3 Querying a Broker L e
4.4 Runninga Cache

Advanced Features of Harvest
5.1 Customizing a Gatherer
5.1.1 Customizing the type recognition step
5.1.2 Customizing the candidate selectionstep
5.1.3 Customizing the presentation unnestingstep
5.1.4 Customizing the summarizingstep
5.1.6 Setting variables in the Gatherer configuration file
5.2 Incorporating manually generated information into a Gatherer
5.3 Tips on gatherering locally versus remotely
5.4 Administrating a Broker L
5.5 Tuning Glimpse indexing in the Broker
5.6 Using different index/search engines with the Broker
5.7 Running a Cache hierarchy,
5.8 Using the Cache’s remote instrumentation interface
5.9 Running a Replicator e

References

The Summary Object Interchange Format (SOIF)

A.1 Formal description of SOIF e
A.2 List of common SOIF attribute names
A.3 Using the SOIF processing software.

Essence Summarizer Actions

C Gatherer Examples

C.1 Example 1- A simple Gatherer
C.2 Example 2 - Incorporating manually generated information
C.3 Example 3 - Customizing type recognition and candidate selection
C.4 Example 4 - Customizing type recognition and summarizing

The Broker’s Query Manager and Collector Interfaces

D.1 Query Manager interface description e
D.2 Collector interface description L
D.3 World Wide Web interface to the Broker

Index

14
14
15
15
15
15
16
16
18
18
20
20
22
23
23

24

25
27
27
28

30

31
31
32
34
34

37
37
38
38

40

1 Introduction to Harvest

HARVEST is an information discovery and access system [4]. It addresses three critical problems to help
users reap the growing collection of information accessible via the World Wide Web [2]. First, it provides
an efficient and flexible means of indexing widely distributed information, to support resource discovery.
Second, it provides network-adaptive means of caching and replicating heavily accessed information, to
prevent bottlenecks. Third, it provides support for accessing and manipulating complex data.

A key goal of Harvest is to provide a flexible system that can be configured in various ways to create
many types of indexes, making very efficient use of Internet servers, network links, and index space on
disk. Our measurements indicate that Harvest can reduce server load by a factor of 6,600, network traffic
by a factor of 59, and index space requirements by a factor of 43 when building indexes, compared with
previous systems, such as Archie, WAIS, and the World Wide Web Worm! [3]. Harvest also allows
users to extract structured (attribute-value pair) information from many different information formats
and build indexes that allow these attributes to be referenced (e.g., all documents with a certain regular
expression in the title field).

What this manual covers

This manual details how to install and use the Harvest software. Section 2 gives a brief overview of the
Harvest system components. Section 3 describes how to obtain and install the software. Section 4 de-
scribes how to make basic use of Harvest for building structured content indexes of Internet information.
Section 5 describes how to use more advanced features of Harvest, such as customizing the indexing
process. The Appendices provide detailed specifications and examples.

This manual is available online in HTML? or PostScript®. Other information about Harvest (includ-
ing a discussion of the motivation, system architecture, demonstrations, and papers about the system)
is available from the Harvest Home Page at hitp://harvest.cs.colorado.edu/.

'http://www.cs.colorado. edu/home/mchbryan/WWWW. html
2http://harvest.cs.colorado.edu/harvest/user-manual/
3http://harvest.cs.colorado.edu/harvest/user-manual.ps

2 Subsystem Overview

As illustrated in Figure 1, Harvest consists of a Gatherer, Broker, Replicator, and an object Cache. The
Gatherer collects indexing information (such as keywords, author names, and titles) from the resources
available at Provider sites (such as FTP and HTTP servers). The Broker retrieves this indexing infor-
mation from the Gatherers and provides a query interface to the body of gathered information. The
Replicator can efficiently replicate Brokers around the Internet. Finally, users can efficiently retrieve
located information through the Cache.

Broker
T T -
P Thesaurus ~ ~
/7
Ve \\
// \
1.search [
Glient } MQuery Collector
2. retrieve \ anager
object & \
methots > d
me \
/
N Storage Mgr i
Sa -~ and Indexer _- -~ Gatherer
~— - ——— —

Replic®

Manager

C rov

rovider

Figure 1: Harvest Software Components

The Harvest software distribution contains a large amount of functionality, in approximately 100,000
lines of code. You don’t need to install all of the software to have a useful system. Three common
configurations are:

Running a Gatherer plus a Broker will provide a Mosaic accessible, content-based, structured in-
dex of a set of information resources.

Running a Gatherer alone will export content-based indexing information about resources from
which you gather. Other sites can then build indexes of those resources at much lower server and
network costs, compared with remote sites building indexes by retrieving each resource through
conventional protocols like FTP, Gopher, or HTTP.

Running a Broker alone will provide a customized index of information gathered by other sites.
Other Harvest servers that provide indexing information can be found by searching the Harvest
Server Registry®.

We recommend that you start by running a Gatherer plus a Broker. If your Broker becomes so
popular that it creates bottlenecks, you can run a Replicator. You may also want to run an object cache
(see Section 4.4), to reduce network traffic for popular data.

%http://harvest.cs.colorado.edu/brokers/hsr/

Combining Gatherers and Brokers

As illustrated in Figure 2, Harvest Gatherers and Brokers can be combined in various ways. Running
a Gatherer remotely allows Harvest to interoperate (via conventional protocols like FTP, Gopher, or
HTTP) with Provider sites that are not running Harvest Gatherers. However, as suggested by the bold
lines in the left side of Figure 2, this arrangement results in excess server and network load. Running a
Gatherer locally is much more efficient, as shown in the right side of Figure 2. Nonetheless, running a
Gatherer remotely is still better than having many sites independently collect indexing information, since
many Brokers or other search services can share the indexing information that the Gatherer collects.

Broker (index) Broker (index) Broker (index) [Broker (index)
x\\ /% / N
/
\ filter filter
AN

Gatherer ' Broker (index) I Broker (index)

\ / f R\\

\

/ \
) . | . Gatherer Gatherer Gatherer
Provider Provider I Provider (on provider host) {on provider host) (on provider host)

Figure 2: Harvest Configuration Options

Figure 2 also illustrates that a Broker can collect information from many Gatherers (to build an index
of widely distributed information). Brokers can also retrieve information from other Brokers, in effect
cascading indexed views from one another. Brokers retrieve this information using the query interface,
allowing them to filter or refine the information from one Broker to the next.

For examples of Harvest Gatherers and Brokers, you are welcome to browse the demonstration
Brokers® and Gatherers® at the University of Colorado.

Shttp://harvest.cs.colorado.edu/brokers/
®http://harvest.cs.colorado.edu/gatherers/

3 Getting and Installing the Harvest Software

You can get the Harvest software from our FTP server’.

Harvest uses GNU’s autoconf package to perform needed localizations at installation time. If you
want to override the default installation location of /usr/local/harvest, change the “prefix” variable in
Makefile 8 Do not use a common directory like /usr/local as the prefix, because Harvest installs about
75 (small) programs. Type make reconfigure after you've changed the prefix variable, to propagate
your change throughout the distribution. If desired, you may edit src/common/include/config.h before
compiling to change various Harvest compile-time limits and variables.

To build and install the entire Harvest system, type:

% make
% make install

You may see some compiler warning messages, which you can ignore. Building the entire Harvest
system will take about 30 minutes on a DEC Alpha or on newer Sun SPARCstations, and almost an
hour on older machines. Including documentation and the compiled source tree, the Harvest distribution
takes approximately 25 megabytes of space.

If you have any problems or comments, please email harvest-dvl@cs.colorado.edu.

Installing individual Harvest components

To build and install individual Harvest components (such as the Gatherer or the Broker), change into
the src directory. If you wish to change the default installation from /usr/local/harvest, then edit the
Makefile there and type make reconfigure to propagate the change. Finally, to build the Harvest
component type make component, and to install the built component, type make install-component,
where valid component names are broker, cache, gatherer, indezer, or replicator. For example, to build
and install the Harvest Gatherer, type:

% cd src
% vi Makefile (if you want to change the prefiz)
% make reconfigure if you changed the prefiz

g

% make gatherer
% make install-gatherer

Supported platforms

Harvest was developed using version 2.5.8 of the GNU C compiler on DEC Alphas running OSF/1 v2.0,
and on Sun SPARCs running SunOS 4.1. Harvest has also been ported to Solaris 2.3. At present we are
concentrating our efforts on supporting OSF/1, SunOS 4.1, and Solaris 2.3. We may eventually support
other operating systems (like HP-UX, Ultrix, etc.), but have no immediate plans to do so. If you port
Harvest to a new system, please notify us via email at harvest-dvl@cs.colorado.edu.

Harvest is written in both C and Perl, so you need to have Perl 4.0 installed. Harvest also uses the
GNU compression software gzip. The source for the GNU C compiler, gzip, and Perl are available from

GNU software servers®.

"f£tp://ftp.cs.colorado.edu/pub/distribs/harvest/
8This is the top-level Makefile in the harvest directory created by extracting the Harvest distribution.
Sftp://ftp.gnu.ai.mit . edu/pub/gnu/

4 Making Basic Use of Harvest

The following subsections introduce the basics of using the Harvest Gatherer, Broker, and Cache. At
this point we assume you have already installed the needed software (see Section 3).

Once you have successfully built a Harvest Gatherer, Broker, or Cache, please register your server
with the Harvest Server Registry using our registration page!®.

4.1 Running a Gatherer

The Gatherer retrieves information resources using a variety of standard access methods (FTP, Gopher,
HTTP, and local files), and then summarizes those resources in various type-specific ways to generate
structured indexing information. For example, a Gatherer can retrieve a technical report from an FTP
archive, and then extract the author, title, and abstract from the paper to summarize the technical
report. Harvest Brokers or other search services can-then retrieve the indexing information from the
Gatherer to use in a searchable index available via a WWW interface.

The structured indexing information that the Gatherer collects is represented as a list of attribute-
value pairs using the Summary Object Interchange Format (see Appendix A). Several example Gatherers
are provided with the Harvest software distribution (see Appendix C).

To run a basic Gatherer, you need only list the Uniform Resource Locators (URLs) [1] from which it
will gather indexing information. This list is specified in the Gatherer configuration file, along with other
optional information such as the Gatherer’s name and the directory in which it resides (see Section 5.1.5
for details on the optional information). Below is an example Gatherer configuration file:

#

sample.cf - Sample Gatherer Configuration File

#

Gatherer—Name: My Sample Harvest Gatherer
Top-Directory: /usr/local/harvest/gatherers/sample

Specify the URLs from which to gather.
<RootNodes>

http://rd.cs.colorado.edu/

</RootNodes>

<LeafNodes>
http://www.cs.colorado.edu/cucs/Home.html
http://www.cs.colorado.edu/ “hardy/Home .html
</LeafNodes>

As shown in the example configuration file, you may classify a URL as a RootNode or a LeafNode. For
a LeafNode URL, the Gatherer simply retrieves the URL and processes it. LeafNode URLs are typically
files like PostScript papers or compressed “tar” distributions. For a RootNode URL, the Gatherer will
expand it into zero or more LeafNode URLs by recursively enumerating it in an access method-specific
way. For FTP or Gopher, the Gatherer will perform a recursive directory listing on the FTP or Gopher
server to expand the RootNode (typically a directory name). For HTTP, a RootNode URL would be an
HTML document that contains embedded links to other URLs. The Gatherer recursively extracts only
the links that point to data that resides on the same server as the original RootNode URL, to prevent
accidentally crossing server boundaries. If you want to gather from multiple servers, you must explicitly
list them in the configuration file.

PLEASE BE CAREFUL when specifying RootNodes as it is possible to specify an enormous amount
of work with a single RootNode URL. To help prevent a misconfigured Gatherer from abusing servers
or running wildly, the Gatherer will only expand a RootNode into a limited number of LeafNodes. You

Onttp://harvest.cs.colorado.edu/brokers/hsr/register-with~hsr.html

can set this limit with the variable MAX_ENUM in src/common/include/config.h. In a future release of
Harvest we will make it possible to set this limit more flexibly.

Note: Harvest does not typically operate as a “robot”, since it does not collect new URLs to retrieve
other than those specified in RootNodes (of course, if you specify many high-level RootNodes you
can make it operate as a robot, but that is not the intended use for the system). The Gatherer is
HTTP version 1.0!! compliant, and sends the User-Agent and From request fields to HT'TP servers for
accountability. Nonetheless, in a future release of Harvest we will integrate some of Koster’s suggested
guidelines'? into the Gatherer.

After you have written the Gatherer configuration file, create a directory for the Gatherer and copy
the configuration file there. Then, run the Gatherer program with the configuration file as the only
command-line argument, as shown below:

% Gatherer your-configuration-file.cf

The Gatherer will generate a database of the content summaries, a log file (log.gatherer), and an
error log file (log.errors). It will also export!® the indexing information automatically to Brokers and
other clients. To view the exported indexing information, you can use the gather client program, as
shown below:

% gather localhost 8000 | more

Controlling access to the Gatherer’s database

You can use the gatherd.cf file to control access to the Gatherer’s database. A line that begins with
Allow is followed by any number of domain or host names that are allowed to connect to the Gatherer.
If the word allis used, then all hosts are matched. Deny is the opposite of Allow. The following example
will only allow hosts in the cs.colorado.edu or usc.edu domain access the Gatherer’s database:

Allow cs.colorado.edu usc.edu
Deny all

Periodic gathering

The Gatherer program does not automatically do any periodic updates — when you run it, it processes
the specified URLs, starts up a gatherd daemon (if one isn’t already running), and then exits. If you
want to periodically update the data (e.g., to capture new files as they are added to an FTP archive),
you need to use the UNIX cron command to run the Gatherer program at some regular interval.

To set up periodic gathering via cron, you should create a script like the following:

#!/bin/csh -f

#

RunGatherer - Runs the ATT 800 Gatherer (from cromn)

#

set GathererAdmin = hardy@cs.colorado.edu

set path = (/rd/bruno/gatherers/att800/bin /usr/local/harvest/bin $path)

cd /rd/bruno/gatherers/att800
Gatherer att800.cf

1s -1 . data | Mail -s "ATT 800 finished at ‘date‘" $GathererAdmin

Muttp://info.cern.ch/hypertext /WWW/Protocols/HTTP/HTTP2 . html
2nttp://web.nexor.co.uk/mak/doc/robots/guidelines . .html
13 The Gatherer leaves the gatherd daemon running in the background to export the database.

You probably also should create and add something like the following script to your /etc/rc.local file,
so the Gatherer is started after the machine reboots:

#!/bin/csh -f

#

RunGatherd - starts up the gatherd process (from /etc/rc.local)
#

set path = (/usr/local/harvest/bin $path)

gatherd ~dir /rd/bruno/gatherers/att800/data 8001

The Gatherer maintains a local disk cache of files it gathered to reduce network traffic from periodic
gathering or from restarting aborted gathering attempts. 1* However, since the remote server must still
be contacted whenever Gatherer runs, please do not set your cron job to run Gatherer frequently. A
typical value might be weekly or monthly, depending on how congested the network and how important -
it is to have the most current data.

Note that, when used in conjunction with cron, the Gatherer provides a more powerful data “mirror-
ing” facility than the often-used mirror!® package. In particular, you can use the Gatherer to replicate
the contents of one or more sites, retrieve data in multiple formats via multiple protocols (FTP, HTTP,
etc.), optionally perform a variety of type- or site-specific transformations on the data, and serve the
results very efficiently as compressed SOIF object summary streams to other sites that wish to use the
data for building indexes or for other purposes.

!4The Gatherer uses its own cache rather than the Harvest Cache (see Section 5.7) because gathering isn’t likely to
exhibit much locality, and would hence affect the Cache’s performance.
18ftp://src.doc. ic.ac.uk/packages/mirror/mirror.tar.gz

4.2 Running a Broker

The Broker retrieves indexing information from Gatherers or other Brokers, incrementally indexes the
collected information, and provides a query interface to it. We have developed a WWW interface to the
Broker’s query interface so that many Internet users can easily use Harvest Brokers.

The Broker (as suggested in Figure 1) uses a flexible indexing interface that supports a variety of
indexing subsystems. The default Harvest Broker uses Glimpse [14] as an indexer, but other indexers
such as WAIS [12] (both freeWAIS'® and WAIS, Inc.’s commercial version'”) and Nebula [5] will also
work with the Broker (see Section 5.6). The Broker supports a flexible administrative interface (see
Section 5.4).

To run a Broker that allows users to query it via a WWW interface (see Appendix D.3 for detailed
information about how the WWW interface is implemented), you will need to install and configure
an HTTP server. We use the NCSA HTTP software, which you can obtain from their FTP server!®.
Since installing an HTTP server can sometimes be difficult, you might also want to look at the list of
Frequently Asked Questions'® on the subject. Once you have an HTTP server configured and you have
installed the Harvest Broker software (see Section 3), you need to install the programs for the WWW
interface to the Broker (which sends user queries to a Broker, generates a result set in SOIF format,
and formats the results for display using HTML viewers; an example formatted SOIF object can be
viewed here?®). Change into the harvest/src/broker/misc directory, which contains the source code to
the WWW interface to the Broker. Edit the Makefile and change the HTTPD_ROOT variable (if needed)
to the location of where you have installed the HTTP server ?!. Finally, type make httpd-install to
compile and install the programs for the WWW interface, as well as to create a sample Broker with
which you can experiment. At this point, the Broker software and the WWW interface are installed.

To create a new Broker, run the CreateBroker program. It will ask you a series of questions about
how you’d like to configure your Broker, and then automatically create and configure it. Finally, to start
your Broker, use the RunBroker program that CreateBroker generates. There are a number of ways
you can customize or tune the Broker, discussed in Sections 5.5 and 5.6.

Note: if you get compilation errors while compiling the lez.yy.c (generated by flex) or y.tab.c
(generated by bison) files in the Broker, verify that you have GNU flex version 2.4.7 and GNU bison
version 1.22. You can get the bison?? code and the flex?® code by FTP.

16£4p://ftp.cnidr.org/pub/NIDR. tools/freewais/

Ynttp://www.vais.com/

18£4p://ftp.nesa.uiuc. edu/Web/httpd/Unix/nesa httpd/current/

¥ngtp://sunsite.unc.edu/bontell/faq/www.faq. html#provide

2Onttp://harvest.cs.colorado.edu/cgi-bin/DisplayObject?object=harvest/so if-example

21 Typically, the Broker and httpd run on the same machine. You can run Broker on a different machine than httpd,
but if you want users to be able to view the Broker's content summaries then the Broker’s files will need to be accessible
to httpd. You can NFS mount those files or manually copy them over. You'll also need to change the Broker's query.html
to point to the host that is running the Broker.

22£4p://ftp.gou.ai.mit. edu/pub/gnu/bison-1.22.tar.gz

23ftp://ftp.gru.ai.mit. edu/pub/gnu/flex-2.4.7.tar.gz

4.3 Querying a Broker

The Harvest Broker can handle many types of queries. The simplest query is a single keyword, such as:
lightbulb

Searching for common words (like “computer” or “html”) may take a lot of time. Please be consid-
erate of other users.

Particularly for large Brokers, it is often helpful to use more powerful queries. Harvest supports many
different index/search engines, with varying capabilities. At present, our most powerful (and commonly
used) search engine is Glimpse?*, which supports:

e case-insensitive and case-sensitive queries;

e matching parts of words, whole words, or multiple word phrases (like “resource discovery”);
e Boolean (AND/OR) combinations of keywords;

e approximate matches (e.g., allowing spelling errors);

e structured queries (which allow you to constrain matches to certain attributes);

e displaying matched lines or entire matching records (e.g., for citations);

o specifying limits on the number of matches returned; and

¢ a limited form of regular expressions (e.g., allowing “wild card” expressions that match all words
ending in a particular suffix). '

The different types of queries (and how to use them) are discussed below. Note that you use the
same syntax regardless of what index/search engine is running in a particular Broker, but that not all
engines support all of the above features. In particular, some of the Brokers use WAIS, which sometimes
searches faster than Glimpse but supports only Boolean keyword queries and the ability to specify result
set limits.

The different options — case-sensitivity, approximate matching, the ability to show matched lines vs.
entire matching records, and the ability to specify match count limits — can all be specified with buttons
and menus in the Broker query forms.

A structured query has the form:

tag-name : value

where tag-name is a Content Summary attribute name, and value is the search value within the
attribute. If you click on a Content Summary, you will see what attributes are available for a particular
Broker. A list of common attributes is shown in Appendix A.2.

Keyword searches and structured queries can be combined using Boolean operators (AND and OR)
to form complex queries. Lacking parentheses, logical operation precedence is based left to right. For
multiple word phrases or regular expressions, you need to enclose the string in double quotes, e.g.,

"internet resource discovery"

or

"discov.*"

24nttp://glimpse.cs.arizona. edu:1994/

Example queries

Simple keyword search query: Arizona

This query returns all objects in the Broker containing the word Arizona.

Boolean query: Arizona AND desert
This query returns all objects in the Broker that contain both words anywhere in the object in
any order.

Phrase query: "Arizona desert"
This query returns all objects in the Broker that contain Arizona desert as a phrase. Notice that
you need to put double quotes around the phrase.

Boolean queries with phrases: "Arizona desert" AND windsurfing

Simple Structured query: Title : windsurfing

This query returns all objects in the Broker where the Title attribute contains the value windsurfing.

Complex query: "Arizona desert' AND (Title : windsurfing)

This query returns all objects in the Broker that contain the phrase Arizona desert and where the
Title attribute of the same object contains the value windsurfing.

Query options selected by menus or buttons
These checkboxes allow some control of the query specification.

Case insensitive: By selecting this checkbox the query will become case insensitive (lower case and
upper case letters differ). Otherwise, the query will be case senstive. The default is case insensitive.

Keywords match on word boundaries: By selecting this checkbox, keywords will match on word
boundaries. Otherwise, a keyword will match part of a word (or phrase). For example, "network”
will matching "networking”, ”sensitive” will match ”insensitive”, and ” Arizona desert” will match

” Arizona desertness”. The default is to match keywords on word boundaries.

Number of errors allowed: Glimpse allows the search to contain a number of errors. An error is
either a deletion, insertion, or substitution of a single character. The Best Match option will find
the match(es) with the least number of errors. The default is 0 (zero) errors.

Note: The previous three options do not apply to attribute names. Attribute names are always
case insensitive and allow no errors.

- Result set presentation
These checkboxes allow some control of presentation of the query return.

Display matched lines (from content summaries): By selecting this checkbox, the result set pre-
sentation will contain the lines of the Content Summary that matched the query. Otherwise, the
matched lines will not be displayed. The default is to display the matched lines.

Display object descriptions (if available): Some objects have short, one-line descriptions associ-
ated with them. By selecting this checkbox, the descriptions will be presented. Otherwise, the
object descriptions will not be displayed. The default is to display object descriptions.

Verbose display: This checkbox allows you to set whether results are displayed listing the filename,
host, path, and Content Summary each on separate lines, or just with two lines listing the filename
(without a label) and the Content Summary (with a label). The default is verbose.

10

Regular expressions

Some types of regular expressions are supported by Glimpse. A regular expression search can be much
slower that other searches. The following is a partial list of possible patterns. (For more details see the
Glimpse manual pages?5.)

¢ ~“joe will match “joe” at the beginning of a line.

joe$ will match “joe” at the end of a line.

e [a-ho-z] matches any character between “a” and “h” or between “o” and “z”.
e . matches any sihgle character except newline.

e c* matches zero or more occurrences of the character “c”

e .* matches any number of wild cards

e * matches the character “*”. (\ escapes any of the above special characters.)

Regular expressions are currently limited to approximately 30 characters, not including meta charac-
ters. Regular expressions will generally not cross word boundaries (because only words are stored in the
index). So, for example, "1in.*ing" will find “linking” or “flinching,” but not “linear programming.”

Default query settings
The Harvest Broker uses the following default query settings with Glimpse:
o case insensitive (except for the Harvest Server Registry, since case is important there)
e match on word boundaries
e 0 spelling errors allowed
¢ display matched lines
e display object descriptions
e verbose display
e maximum of 50 results

The Harvest Broker uses the following default query settings with WAIS:

e display object descriptions
e verbose display

e maximum of 50 results

25http://glimpse.cs.arizona.edu:1994/glimpse.html

11

4.4 Running a Cache

The Harvest object Cache allows users to retrieve objects quickly and efficiently, often avoiding the need
to cross the Internet. The Cache consists of the main server daemon cached, some server programs for
accessing FTP data, and some optional management and client tools. The FTP programs arose because
of the complexity of FTP — while we access Gopher and HTTP using C code built in to cached, we
access FTP using an external program (ftpget .pl), which uses three Perl library files (discussed below).

The Cache uses Proxy access. This is a standard mechanism understood by several available clients
(e.g., NCSA Mosaic, netscape, and Lynx) that provides a means of redirecting access for FTP, Gopher,
HTTP, etc. through an intermediary process. Often this is used to redirect access through a filtering
program on a firewall, providing access control to internal network resources. Proxy access is transparent

“to the user.
To run the Cache server cached:

1. Install cached and ftpget.pl in a directory located in your path (e.g., fusr/local/bin). Install
the files chat2.pl, ftp.pl, and socket.ph into a library directory, and set the pointer to them in
ftpget.pl2e.

2. Modify harvest/src/cache/server/cached.conf for your site, and then install it as /etc/cached.conf
on your system (or specify the actual location in the cached command line, as shown below). Ata
minimum, you should edit the settings of cache_dir, cache_log, cache_access_log, and cache_mgr. You
can also change other variables, such as per-object timeouts. (Each of the variables is documented
in comments in the cached.conf file supplied in the Harvest distribution.) In particular, you can
specify the topology of neighbor and parent caches, using one or more cache_host variables (see
Section 5.7.). Note that cached uses three port numbers for the ASCII, UDP, and TCP protocol
interfaces. Example values are shown in the provided cached.conf file.

3. Run cached (or use the RunCache program included in the Harvest distribution)?”. cached does
not need to be run as root. The command line arguments for cached are:

Usage: cached [-ehs] [-f config-file]l [-d debug-level] [-[apul port-number]

-e Print debug message to stderr.

-h Print help message.

-8 Disable syslog output.

-f config-file Use given config-file instead of /etc/cached.conf.

-d debug-level Use given debug-level, prints messages to stderr.

-a port-number Specify ASCII port number. Defaults to 3128.

-p port-number Specify TCP (binary) port number. Defaults to 3129.
-u port-number Specify UDP port number. Defaults to 3130.

Users can retrieve objects through the Cache by setting three environment variables before running
NCSA Mosaic (version 2.4) or Lynx. The easiest way is to use the provided CachedMosaic or CachedLynx
script. These scripts simplify migrating many users to the Cache without changing each user’s local
environment. To do this, change each script to contain the name of the machine on which you are
running a Cache. Then, rename the standard Mosaic and Lynx programs, and change CachedMosaic
or CachedLynx to use these new names. Rename the scripts to the executable names that users would
normally use to access the standard Mosaic or Lynx programs (e.g., xmosaic and lynx). Finally, copy
the scripts in the path where the standard Mosaic and Lynx normally go.

26Note that these paths are set up automatically when you install from the entire Harvest distribution (using GNU
autoconf), but you need to set things up manually if you choose to install a pre-compiled binary version of cached.
27You should edit one of your /ete/rc* files so the Cache is automatically started when your machine boots up.

12

During the development of the Cache, we discovered a bug in NCSA Mosaic version 2.4. The standard
version of NCSA Mosaic will work correctly for the majority of normal use; however, our patch?® to
Mosaic is required if you want Gopher menus to work correctly. This patch also contains an improved
Reload button, with which you may force re-retrieval of objects through the cache (i.e., for stale data).

Note: if you find the cache doesn’t work with FTP URLs, it may be that you do not have the
ftpget.pl program installed properly. Verify that ftpget.pl is in your- PATH when you execute
cached (or that the ftpget.pl program is explicitly listed in your cached.conf file). You can verify that
ftpget.pl works by running:

% ftpget.pl - ftp.dec.com / I anonymous harvest-user®
pget.p P y

28 http://excalibur.usc.edu/dist/

13

5 Advanced Features of Harvest

5.1

The Harvest Gatherer’s actions are defined by a set of configuration and utility (“lib/”) files, and a
corresponding set of executable (“bin/”) programs pointed to by some of the configuration files. In the
basic use of Harvest described in Section 4.1, the location of the lib directory defaults to the $(prefiz)/Iib
directory specified in the top-level Makefile (/usr/local/harvest by default), and the bin programs are
found in the user’s PATH.

If you want to customize a Gatherer, you should create din and Iib subdirectories in the directory
where you are running the Gatherer, and then copy $(prefiz)/lib/*.cf and $(prefiz)/lib/magic into your
Izb directory. The details about what each of these files does are described in the subsections below. The
basic contents of a typical Gatherer’s directory is as follows (note: some of the files names below can be
changed by setting variables in the Gatherer configuration file, as described in Section 5.1.5):

Customizing a Gatherer

bin/ data/ 1lib/ log.errors tmp/ log.gatherer
bin:

RunGatherd RunGatherer

data:

All-Templates.gz PRODUCTION.gdbm gatherd.cf
INDEX.gdbm WORKING.gdbm gatherd.log
lib:

GathName.cf byname.cf magic stoplist.cf
bycontent.cf byurl.ct quick-sum.cf

tmp:
cache-liburl/

The log.errors and log.gatherer files contain error messages and the output of the Essence typing
step, respectively (Essence will be described shortly).

The files in the above data directory other than gatherd.cf (which you can create to support access
control, as described in Section 4.1) are created automatically when you run the Gatherer, as are the
files and directories in the ¢mp directory. The files in the above bin directory are the boot and cron
and scripts, described in Section 4.1. Other files will need to be created in this bin directory when you
customize the Gatherer, as described in the subsections below. The files in the lib directory shown above
include the file GathName.cf, which you should name according to the function of your Gatherer (e.g.,
“ColoradoWWW.cf” for gathering data from all the WWW files in Colorado). The other files in the
above ltb directory are described briefly in the following table:

FIiLE or DIRECTORY | DESCRIPTION

GathName.cf

Specifies URLs and Gatherer configuration variables

bycontent.cf

Content parsing heuristics for type recognition step

byname.cf File naming heuristics for type recognition step
byurl.cf URL naming heuristics for type recognition step
magic UNIX “file” command specifications (matched against

bycontent.cf strings)

quick-sum.cf

Extracts attributes for summarizing step.

stoplist.cf

File types to reject during candidate selection

The Gatherer uses a subsystem called Essence [10,11] to support customized information extraction.
Essence allows the Gatherer to collect indexing information easily from a large amount of resources. In

14

a nutshell, Essence can determine the type of data pointed to by a URL (e.g., PostScript vs. HTML) 29,
“unravel” presentation nesting formats (such as compressed “tar” files), select which types of data to
index (e.g., don’t index Audio files), and then apply a type-specific extraction algorithm to the data to
generate a content summary. Users can customize each of these aspects, although a basic set of defaults
covers many cases reasonably well. The default summarizing actions are listed in Appendix B. We
discuss each of the customizable steps in the subsections below.

5.1.1 Customizing the type recognition step

Essence recognizes types in three ways: by file naming heuristics, by URL naming heuristics, and by
locating identifying data with a file using the UNIX file command.

To modify the type recognition step, edit lib/byname.cfto add file naming heuristics, or lib/byurl.cfto
add URL naming heuristics, or lib/bycontent.cf to add by-content heuristics. The by-content heuristics
match the output of the UNIX file command, so you may also need to edit the lib/magic file. See
Appendix C.3 and C.4 for detailed examples on how to customize the type recognition step.

5.1.2 Customizing the candidate selection step

The lib/stoplist.cf configuration file contains a list of types that are rejected by Essence. You can add
or delete types from lib/stoplist.cf to control the candidate selection step.

To direct Essence to index only certain types, you can list the types to index in lib/allowlist.cf. Then,
supply Essence with the -—allowlist flag.

The file and URL naming heuristics used by the type recognition step (described in Section 5.1.1)
are particularly useful for candidate selection when gathering remote data. They allow the Gatherer to
avoid retrieving files that you don’t want to index (in contrast, recognizing types by locating identifying
data within a file requires that the file be retrieved first). This approach can save quite a bit of network
traffic, particularly when used in combination with enumerated RootNode URLs. For example, many sites
provide each of their files in both a compressed and uncompressed form. By building a lib/allowlist.cf
containing only the Compressed types, you can avoid retrieving the uncompressed versions of the files.

5.1.3 Customizing the presentation unnesting step

Some types are declared as “nested” types. Essence treats these differently than other types, by running
a presentation unnesting algorithm or “Exploder” on the data rather than a Summarizer.

To customize the presentation unnesting step you can modify the Essence source file harvest/src/-
gatherer/essence/unnest.c. This file lists the available presentation encodings, and also specifies the
unnesting algorithm. Typically, an external program is used to unravel a file into one or more component
files (e.g., gunzip, uudecode, and tar).

An Ezploder may also be used to explode a file into a stream of SOIF objects. An Exploder program
takes a URL as its first command-line argument and a file containing the data to use as its second,
and then generates one or more SOIF objects as output. For your convenience, the Ezploder type is
already defined as a nested type. To save some time, you can use this type and its corresponding
Exploder.unnest program rather than modifying the Essence code.

See Appendix C.2 for a detailed example on writing an Exploder. The unnest.c file also contains
further information on defining the unnesting algorithms.

5.1.4 Customizing the summarizing step

Essence supports two mechanisms for defining the type-specific extraction algorithms (called Summariz-
ers) that generate content summaries: a UNIX program that takes as its only command line argument

29While HTTP provides MIME types, other access methods (like FTP) do not. Essence can use either explicit information
or heuristic “rules” to determine types.

15

the filename of the data to summarize, and line-based regular expressions specified in lib/quick-sum.cf.
See Appendix C.4 for detailed examples on how to define both types of Summarizers.

The UNIX Summarizers are named using the convention TypeName.sum (e.g., PostScript.sum).
These Summarizers output their content summary in a SOIF attribute-value list (see Appendix A.3 for
information on how to use the SOIF library to write a summarizer). You can use the wrapit command to
wrap raw output into the SOIF format (i.e., to provide byte-count delimiters on the individual attribute-
value pairs). Look in harvest/src/gatherer/summarize for many examples of UNIX summarizers.

5.1.5 Setting variables in the Gatherer configuration file

The Gatherer configuration file consists of two parts: a list of variables that specify information about
the Gatherer (such as its name, host, and port number), and two lists of URLs (divided into RootNodes
and LeafNodes) from which to collect indexing information. Section 4.1 shows an example Gatherer
configuration file. In this section we focus on the variables that the user can set in the first part of the
Gatherer configuration file.

Each variable name starts in the first column, ends with a colon, then is followed by the value. The
following table shows the supported variables:

VARIABLE NAME | DESCRIPTION]

Top-Directory Top-level directory for the Gatherer.
Data-Directory Directory where GDBM database is written.
Errorlog-File File for logging errors.

Essence-Options Any extra options to pass to Essence.
Gatherd-Inetd Denotes that gatherd is run from inetd.
Gatherer-Host Full hostname where the Gatherer is run.
Gatherer-Name A Unique name for the Gatherer.
Gatherer-Port Port number for gatherd.

Gatherer-Version Version string for the Gatherer.

Log-File File for logging progress.

Lib-Directory Directory where configuration files live.
Working-Directory | Directory for tmp files and local disk cache.

Essence-Options is particularly useful, as it lets you customize basic aspects of the Gatherer easily;
for example, by specifying -~full-text you can cause the Gatherer to do full text summarizing rather
than the more terse selected text default.

5.2 Incorporating manually generated information into a Gatherer

You may want to inspect the quality of the automatically-generated SOIF templates. In general,
Essence’s techniques for automatic information extraction produce imperfect results. Sometimes it is pos-
sible to customize the summarizers to better suit the particular context (see Section 5.1.4). Sometimes,
however, it makes sense to augment or change the automatically generated keywords with manually
entered information. For example, you may want to add Title attributes to the content summaries for a
set of PostScript documents (since it’s difficult to parse them out of PostScript automatically).

Harvest provides some programs that automatically clean up a Gatherer’s database. The rmbinary
program removes any binary data from the templates. The cleandb program does some simple validation
of SOIF objects, and when given the -truncate flag it will truncate the Keywords data field to 8 kilobytes.
To help in manually managing the Gatherer’s databases, some simple database management tools are
in provided in harvest/src/gatherer/db/gdbmutil.

In a future release of Harvest we will provide a forms-based mechanism to make it easy to provide
manual annotations. In the meantime, you can annotate the Gatherer’s database with manually gen-
erated information by using the mktemplate, template2db, mergedb, and mkindex programs. You
first need to create a file (called, say, annotations) in the following format:

16

QFILE { urli

Attribute-Name-1: DATA
Attribute-Name-2: DATA
Attribute-Name-n: DATA
}

QFILE { url2
Attribute-Name-1: DATA
Attribute-~Name-2: DATA
Attribute-Name-n: DATA
}

Note that the Attributes must begin in column 0 and have one tab after the colon, and the DATA
must be on a single line.

Next, run the mktemplate and template2db programs to generate SOIF and then GDBM versions
of these data:

% mktemplate annotations [annotations2 ...]
% template2db annotations.gdbm annotations [annotations2 ...]

(You can have several files containing the annotations, and generate a singe GDBM database from
the above commands.)

Finally, you run mergedb to incorporate the annotations into the automatically generated data, and
mkindex to generate an index for it. The usage line for mergedb is:

mergedb production automatic manual [manual ...]

The idea is that production is the final GDBM database that the Gatherer will serve. This is a
new database that will be generated from the other databases on the command line. automatic is the
GDBM database that a Gatherer automatically generated in a previous run (e.g., WORKING.gdbm
or a previous PRODUCTION.gdbm). manual and so on are the GDBM databases that you manually
created. When mergedb runs, it builds the production database by first copying the templates from the
manual databases, and then merging in the attributes from the automatic database. In case of a conflict
(the same attribute with different values in the manual and automatic databases), the manual values
override the automatic values.

By keeping the automatically and manually generated data stored separately, you can avoid losing
the manual updates when doing periodic automatic gathering. To do this, you will need to set up a
script to remerge the manual annotations with the automatically gathered data after each gathering.

An example use of mergedb is:

% mergedb PRODUCTION.new PRODUCTION.gdbm annotations.gdbm
% mv PRODUCTION.new PRODUCTION.gdbm
% mkindex

If the manual database looked like this:

QFILE { urli
my-manual-attribute: +this is a neat attribute

}

and the automatic database looked like this:

17

QFILE { urli

keywords: boulder colorado

file-size: 1034

md5: c3d79dc037efd538ce50464089af2fh6
}

then in the end, the production database will look like this:

QFILE { urli

my-manual-attribute: this is a neat attribute
keywords: boulder colorado

file-size: 1034

nmd5: ¢3d79dc037efd538ce50464089af2fb6

}

5.3 Tips on gatherering locally versus remotely

Our measurements indicate that gathering data via the local file system causes 6.99 times less CPU load
than gathering via FTP, primarily because of all the UNIX forking required to gather information via
FTP. Similar reductions are possible for gathering locally vs. via Gopher or HTTP.

For large collections (e.g., archive sites containing many thousands of files), it makes sense to try
to gather via the local file system. Unfortunately, at this time there is no perfect solution. If you use
“file://” URLs you can gather via the local file system, but remote users will not be able to retrieve the
documents remotely via Mosaic by clicking on the document URL in the Broker’s search results.

In time we will improve the gatherer to allow “ftp://” and other URLs that gather via the local
file system when that optimization is possible. In the mean time, if CPU load is more important than
allowing remote Mosaic access via the Broker search result links, you can specify “file://” URLs in your
Gatherer configuration file so that the Gatherer goes through the local file system. Then, manually
translate the URLs on the first line of each template in the Gatherer’s database from the file URLs to
the proper URL (i.e., FTP). This is a little tricky, but if you want to save the server load by going
through the local file system to retrieve the data then it might be worth the effort. You can pipeline
gdbmprint, template2db, and your own sed or Perl script to make the translation.

5.4 Administrating a Broker

Administrators have two basic ways for managing a Broker: through the broker.confand Collection.conf
configuration files, and through the interactive administrative interface. The interactive interface controls
various facilities and operating parameters within the Broker. We provide a HTML interface page
for these administrative commands. See Appendix D for more detailed information on the Broker
administrative and collector interfaces.

The broker.conf file is a list of variable names and their values, which consists of information about
the Broker (such as the directory in which it lives) and the port on which it runs. The Collection.conf
file (see Appendix D.2 for an example) is a list of collection points from which the Broker collects its
indexing information. The CreateBroker program automatically generates both of these configuration
files. You can manually edit these files if needed.

! The CreateBroker program also creates the admin.himl file, which is the WWW interface to the
Broker’s administrative commands. Note that all administrative commands require a password as defined
in broker.conf. Note; Changes to the Broker configuration are not saved when the Broker is restarted.
Permanent changes to the Broker configuration should be done through the broker.conf file.

The administrative interface created by CreateBroker has the following window fields:

18

Command: Select an administrative command.

Parameters: Specify parameters for those commands that need them.
Password: The administrative password.

Broker Host: The host where the broker is running.

Broker Port: The port where the broker is listening.

The administrative interface created by CreateBroker supports the following commands:

Set Variable: will set the value of any variable listed in the broker.conf file. It takes two parameters:
the name of a configuration variable and the new value for the variable.

Add log entry: starts the logging of information about particular types of events. The one parameter
is the name of an event type. Currently, event types are as follows:

Update Log updated objects.

Delete Log deleted objects.

Refresh Log refreshed objects.

Query Log user queries.

Query-Return Log objects returned from a query.
Cleaned Log objects removed by the cleaner.
Collection Log collection events.

Admin Log administrative events.
Admin-Return Log the results of administrative events.
Bulk-Transfer Log bulk transfer events.
Bulk-Return Log objects sent by bulk transfers.
Cleaner-On Log cleaning events.
Compressing-Registry Log registry compression events.
Al Log all events.

Add object list: adds multiple objects to the Broker. The parameter is a list of file names (relative
to the Broker) that should be added to the Broker.

Close log file: flushes all accumulated log information and close the current log file. No parameters.
Flush log to disk: will flush all accumulated log information to the current log file. No parameters.

Index changes: will cause the Broker to perform an incremental indexing, to index objects that have
been added to the Broker recently. No parameters.

Index corpus: reindexes the entire object database. No parameters.

Open log file: opens a new log file. If the file does not exist, it will create a new one. The parameter
is the name (relative to the Broker) of a file to use for logging.

Remove expired objects: starts a garbage collection of the registry to remove any object with an
expired Time-to-Live. No parameters.

Remove log entry: stops the logging of information about particular types of events. See the Add log
entry command for a list of events.

Remove object by query: removes all objects that match a particular query. The parameter is a
Broker query without any flags, similar to the queries used for bulk transfer.

Remove object list: removes several objects from the Broker. The parameter is a list of SOIF object
file names.

19

Restart server: forces the Broker to reread the registry and the configuration files. This does not
actually kill the Broker process. No parameters.

Shutdown server: cleanly stops the Broker. No parameters.

Start collection: begins the Broker’s collections, using information in its Collection.conf file. No pa-
rameters.

5.5 Tuning Glimpse indexing in the Broker

The Glimpse indexing system can be tuned in a variety of ways to suit your particular needs. Probably
the most noteworthy parameter is indexing granularity, for which Glimpse provides three options: a
tiny index (2-3% of the total size of all files — your mileage may vary), a small index (7-8%), and a
medium-size index (20-30%). Search times are better with larger indexes.

Since search speed is usually more important than index space in popular Internet servers, the de-
fault for Harvest is to use medium-size Glimpse indexes. This is specified by using the -b option to
glimpseindex in the source file harvest/src/broker/Glimpse/indez.c. This tells glimpseindex to gener-
ate an index that points to the exact locations of all occurrences of all words. If you want to experiment
with the time/space tradeoff, you can try the -o option for smaller size. This tells glimpseindex to
generate an index that points to the files where each word occurs, but not the location within the
file; at search time individual files are searched directly. If you specify neither the -b nor -o option,
glimpseindex will generate an index that for each word points to a block of files where that word
occurs. This provides the most space-efficient (because the pointers are smaller and words that appear
many times are stored only once) and slowest search time arrangement.

Another useful option is -n, which tells glimpseindex to index numbers as well as text. This is
useful when searching for dates or other identifying numbers, but it may make the index very large if
there are many numbers. The default is not to index numbers.

Glimpse uses a “stop list” to avoid indexing very common words. This list is not fixed, but rather
computed as the index is built. For a medium-size index, the default is to put any word that appears
at least 500 times per Mbyte (on the average) in the stop-list. For a small-size index, the default is
words that appear in at least 80% of all files (unless there are fewer than 256 files, in which case there
is no stop-list). Both defaults can be changed using the -S option, which should be followed by the new
number (average per Mbyte when -b indexing is used, or % of files when -0 indexing is used). Tiny-size
indexes do not maintain a stop-list (their effect is minimal).

In a future version of Harvest we will make it possible to set the glimpseindex time/space tradeoff
and number indexing option from a configuration file, rather than requiring you to modify the source
code. Also, in the future we will provide support for glimpseserver, which allows indexes to be read
into a process and kept in memory, avoiding the added cost of reading the index and starting a large
process for each search.

glimpseindex includes a number of other options that may be of interest. You can find out more
about these options (and more about Glimpse in general) in the Glimpse manual pages®°.

5.6 Using different index/search engines with the Broker

By default, Harvest uses the Glimpse index/search subsystem. However, Harvest defines a flexible index-
ing interface, to allow Broker administrators to use different index/search subsystems to accommodate
domain-specific requirements. For example, it might be useful to provide a relational database backend,
or a Latent Semantic Indexing [9] backend.

At present we distribute code to support an interface to both the public and the commercial WAIS
index/search engines, Glimpse, and Nebula [5] 3.

30nttp://glimpse.cs.arizona.edu:1994/glinpsehelp. html
31While Nebula was built by one of the Harvest investigators’ research groups, we do not presently distribute the Nebula
system with Harvest. We will do so in a a future release of Harvest.

20

Below we discuss how to use WAIS instead of Glimpse in the Broker, and provide some brief discussion
of how to integrate a new index/search engine into the Broker. In time we will make this latter part of
the manual more complete.

Using WAIS as an indexer

Support for using WAIS (both freeWAIS and WAIS Inc.’s index/search engine) as the Broker’s indexing
and search subsystem is included in the Harvest distribution. WAIS is a nice alternative to Glimpse if
you need faster search support 2 and are willing to lose the more powerful query features.

To integrate WAIS with the Broker, follow the instructions at the top of harvest/src/broker/-
Makefile, and build the new Broker. CreateBroker will ask you where the WAIS programs (waisindex,
waissearch, waisserver, and with the commercial version of WAIS waisparse) are located. When
you run the Broker, a WAIS server will be started automatically after the index is built.

Integrating a new index/search back-end into the Broker

To add a new index/search backend to the Broker, you must define twelve routines for indexing, querying,
and administering the Broker/indexer interface. These routines collectively define a standard for object
indexing, index consistency maintenance, and querying. Depending on the system you are trying to
integrate, some of these functions will likely be null calls, and much of the functionality might reside in
a few of the other calls.

The code for this interface is in harvest/src/broker/index.c and harvest/src/broker/indez.h. In the
distribution these files are symbolic links to the .c and .h files for either Glimpse or WAIS. If you want to
define a new indexing interface, create a new subdirectory and set the symbolic links accordingly. You
can start with the skeleton files in harvest/src/broker/Skeleton/. If you create the routines for a system
we do not currently support and are willing to provide those routines to us (possibly with copyright
restrictions), please email harvest-dvl@cs.colorado.edu.

We discuss each of the routines below. More details about the Broker design and implementation
are available in William Camargo’s thesis [6]. The functions that define the indezing interface between
the Broker and the indexer:

int IND_Index Start()
Prepare for indexing a stream of objects.

int IND_Index.Flush()
Finish indexing a stream of objects and flush updates.

int IND New Object(reg-t *entry)
Index a new object from its registry entry.

int IND Destroy. Obj
Remove an object from the indexer.

int IND_Index Full()
Completely reindex all objects.

int IND._Index Incremental()
do a full incremental update of the index.

This Broker/indexer interface is designed to support both object-at-a-time (incremental) and batch
(non-incremental) indexers. An indexing session begins with a call to IND_Indez_Start, where you can
call initialization routines for your indexer. For each update, the Collector (a part of the Broker) calls

32WAIS indexes use fine-grained blocks and a sorted index to minimize search-time I/O, while Glimpse allows regular
expressions and other features by searching the index sequentially, and allows indexing granularity to be adjusted to trade
index size for search time.

21

IND_New_Object or IND_Destroy_Object. A batch indexer should just queue the request, whereas an
object-at-a-time indexer can use the call to update the object index. When a stream of updates is
finished, the Collector calls IND_Flush to process any queued updates. Note that if the Broker fails
before an index is flushed, updates may be lost. To overcome any inconsistency in the database, the
Broker forces a garbage collection that removes and reindexes all objects. For more details about the
Collector interface, see Appendix D.2.

The Broker supports configuration through the broker.conf configuration file and the administrative
interface. For more details about the administrative interface, see Section 5.4. An indexer can be
configured through two routines:

int IND.initialize()
Initialize interface to indexer; called when the Broker is initialized.

int IND_config(char *value, char *tag)
Set the value of indexer specific variables; called when the Broker configuration file is loaded and
when a variable is set through the administrative interface.

The most complicated routines for most indexers are the query processing routines. Since most
indexers have different query languages, the Broker translates a query into an intermediate form, which
the Broker/indexer interface then translates into an indexer-specific query. The results of the query are
then analyzed and a list of UIDs is returned. The following routines define the query interface to the
indexer:

int IND.do_query(qlist *q, int socket, int type, int time)
Process a query. Three types of queries may be processed as specified by the type parameter:
USER, BULK, and DELETE. For BULK queries used by the Broker-to-Broker interface, the time
parameter restricts the objects that can be returned. The socket is passed to object display routines
for sending results.

void IND_Init Flags()
Initialize indexer-specific query parser flags.

void IND Set Flags(char *tag, char *value)
Set indexer-specific query parser flag.

5.7 Running a Cache hierarchy

The Harvest Cache supports a hierarchal arrangement of Caches [3]. To place your Cache in a hierarchy,
use the cache_host variable in the cached.conf to specify the parent and neighbor nodes. For example,
the following cached.conf file on littleguyl.usc.edu configures its cache to retrieve data from one parent
cache and two neighbor caches:

cached.conf - On the host: littleguyl.usc.edu

Format is: hostname type ascii_port udp_port tcp_port

EC I A

cache_host bigserver.usc.edu parent 3128 3130 3129
cache_host littleguy2.usc.edu neighbor 3128 3130 3129
cache_host littleguy3.usc.edu neighbor 3128 3130 3129

22

5.8 Using the Cache’s remote instrumentation interface

The Cache provides a remote instrumentation interface, allowing you to gather statistics about many
caches from a single graphical client. The instrumentation interface is implemented using Tcl/Tk, so
you must have that software installed to use the instrumentation interface. (You might try doing “which
tclsh” to locate your local Tecl code, in case it happens to be already installed in your path).

The instrumentation interface also allows caches to be shutdown remotely. To provide a measure of
security, we use a simple password mechanism. For this purpose, you should add the user “cache” to
your /etc/passwd file (or the passwd ypmap for NIS). cached will check the given password with this
account when a shutdown is requested.

5.9 Running a Replicator

The Replicator replicates Broker data around the Internet to help distribute Broker server load, and
to increase availability and query performance. The Replicator uses the mirrord system as a basis for
replicating the Brokers. Mirrord is an Internet file system replication service that replicates (or mirrors)
file system hierarchies at any number of locations. A “master copy” mirroring scheme is used with all
master copies being replicated into a common pool. This approach allows different sites to maintain
different collections of files but the resulting archive is a compilation of all of the sites. Mirrord itself is
layered atop a hierarchical, flooding update-based group communication subsystem called floodd [7].
To run a Replicator, follow the instructions in harvest/src/replicator/README.

23

6
[1]

(2]

[3]

[11]

[12]

References

T. Berners-Lee. RFC 1630: Universal Resource Identifiers in WWW. CERN, June 1994. IETF
URI Working Group. Available from fip://fip.internic.net/rfc/rfc1630.tzt.

T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret. The world-wide web.
Communications of the ACM, 37(8):76-82, August 1994.

C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. Harvest: A scal-
able, customizable discovery and access system. Technical Report CU-CS-732-94, Department
of Computer Science, University of Colorado, Boulder, Colorado, Aug. 1994. Available from
ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/Harvest. FullTR.ps. Z.

C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The Harvest information
discovery and access system. In Proceedings of the Second International WWW Conference ’94:
Mosaic and the Web, Chicago, Illinois, Oct. 1994. Available from ftp://ftp.cs.colorado.edu/pub/-
cs/techreports/schwartz/Harvest. Conf.ps.Z.

C. M. Bowman, C. Dharap, M. Baruah, B. Camargo, and S. Potti. A file system for information
management. Proceedings of the Conference on Intelligent Information Management Systems, June
1994. Pre-publication version available from fip://ftp.cse.psu.edu/pub/bowman/doc/iims.ps.Z.

W. G. Camargo. The harvest broker. Master’s thesis, Department of Computer Science, Penn-
sylvania State University, 1994. Available from fip://grand.central.org/afs/transarc.com/public/-
camargo/broker.ps.

P. Danzig, K. Obraczka, D. DeLucia, and N. Alam. Massively replicating services in autonomously
managed wide-area internetworks. Technical report, Department of Computer Science, University
of Southern California, Jan. 1994. Available from fip://catarina.usc.edu/pub/kobraczk/ToN.ps.Z.

P. Deutsch and A. Emtage. Publishing Information on the Internet with Anonymous FTP.
Bunyip Information Systems Inc., May 1994. IETF IAFA Working Group. Available from
fip://nri.reston.va.us/internet-drafts/draft-ietf-iiir-publishing-01.txt,

S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harshman. Using latent
semantic analysis to improve access to textual information. Proceedings of the CHI 88, 1993.

D. R. Hardy and M. F. Schwartz. Customized information extraction as a basis for resource dis-
covery. Technical Report CU-CS-707-94, Department of Computer Science, University of Colorado,
Boulder, Colorado, Mar. 1994. Submitted for publication. Available from ftp://ftp.cs.colorado.edu/-
pub/cs/techreports/schwartz/Essence.Jour.ps.Z .

D. R. Hardy and M. F. Schwartz. Essence: A resource discovery system based on semantic file index-
ing. Proceedings of the USENIX Winter Conference, pages 361-374, January 1993. Pre-publication
version available from fip://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/Essence.Conf.ps.Z.

B. Kahle and A. Medlar. An information system for corporate users: Wide Area Information
Servers. ConneXions - The Interoperability Report, 5(11):2-9, November 1991. Available from
ftp://think.com/wais/wais-corporate-paper.text.

L. Lamport. LaTeX: A Document Prepartion System. Addison Wesley, Reading, Massachusetts,
second edition, 1994.

U. Manber and S. Wu. Glimpse: A tool to search through entire file systems. Proceedings of the
USENIX Winter Conference, pages 23-32, January 1994. Pre-publication version available from
fip://cs.arizona.edu/reports/1993/TRIS-34.ps.Z.

R. L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT Laboratory for Computer Sci-
ence and RSA Data Security, Inc., April 1992. Available from ftp://ftp.internic.net/rfc/rfc1321.tat.

24

A The Summary Object Interchange Format (SOIF)

Harvest Gatherers and Brokers communicate using a an attribute-value stream protocol called the Sum-
mary Object Interchange Format (SOIF), an example of which is available here®®. Gatherers generate
content summaries for individual objects in SOIF, and serve these summaries to Brokers that wish to
collect and index them. SOIF provides a means of bracketing collections of summary objects, allowing
Harvest Brokers to retrieve SOIF content summaries from a Gatherer for many objects in a single, ef-
ficient compressed stream. Harvest Brokers provide support for querying SOIF data using structured
attribute-value queries and many other types of queries, as discussed in Section 4.3.

To see an example of a SOIF summary stream, you can run the gather client program, as discussed
in Section 4.1. When you do, you’ll see output like this:

QDELETE { }

QREFRESH { }

QUPDATE {

CFILE { ftp://ecrc.de/pub/ECRC_tech_reports/reports/ECRC-93-10.ps.Z
Time-to-Live{7}: 9676800

Last-Modification-Time{9}: 774988159
Refresh-Rate{7}: 2419200

Gatherer-Name{50}: Computer Science Technical Reports - Selected Text
Gatherer-Host{21}: bruno.cs.colorado.edu
Gatherer-Version{3}: 0.3

Type{10}: Compressed

Update-Time{9}: 774988159

File-Size{6}: 164373

MD5{32}: 43193942d4d53f5a8e4a7b4bcff7a415
Embed<1>-Nested-Filename{13}: ECRC-93-10.ps
Embed<1>-Type{10}: PostScript
Embed<1>-File-Size{6}: 428233

Embed<1>-MD5{32}: 84¢123582¢3d0754a39a78a7e2£fb6d23
Embed<1>-Keywords{105}:

technical report ECRC{93{10

Polymorphic Sorts and Types for

Concurrent Functional Programs

Bent Thomsen

}

QFILE { ftp://cml.rice.edu/pub/reports/9404.ps.Z

Time-to-Live{7}: 9676800

Last-Modification-Time{9}: 772872313

Refresh-Rate{7}: 2419200

Gatherer-Name{50}: Computer Science Technical Reports - Selected Text
Gatherer-Host{22}: powell.cs.colorado.edu

Gatherer-Version{3}: 1.0

Type{i0}: Compressed

File-Size{6}: 240015

Update-Time{9}: 772872313

MD5{32}: 1712¢ce5a973¢cfbb0508b405d6fef1669
Embed<1>-Nested-Filename{7}: 9404 .ps

Embed<1>-Type{10}: PostScript

Embed<1>-File-Size{6}: 488770

Embed<1>-MD5{32}: 84b748dbddab72a1fb1d9c3£67a2dda9
Embed<1>-Keywords{5135}: /dsp/local/papers/spletter94/spletter94.dvi

33http://harvest.cs.colorado.edu/cgi-bin/DisplayObject?object=harvest/soif-example

25

Submitted to: IEEE SP. Letters - May 1994

NONLINEAR WA VELET PROCESSING FOR

ENHANCEMENT OF IMAGES

J.E. Odegard, M. Lang, H. Gue, R.A. Gopinath, C.S. Burrus
Department of Electrical and Computer Engineering,

Rice University, Houston, TX-77251

CML TR94-04

May 1994

NONLINEAR WA VELET PROCESSING FOR ENHANCEMENT OF IMAGES

J.E. Odegard, M. Lang, H. Guo, R.A. Gopinath, C.S. Burrus

Department of Electrical and Computer Engineering,

Rice University, Houston, TX-77251

CML TR94-04

May 1994

Abstract

In this note we apply some recent results on nonlinear wavelet analysis
to image processing. In particular we illustrate how the (soft)
thresholding algorithm due to Donoho [2] can successfully be used to
remove speckle in SAR imagery. Furthermore, we also show that transform
coding artifacts, such as blocking in the JPEG algorithm, can be removed
to achieve a perceptually improved image by postprocessing the
decompressed image.

EDICS: SPL 6.2

Contact Address:

Jan Erik Odegard

Electrical and Computer Engineering - MS 366

Rice University,

Houston, TX-77251-1892

Phone: (713) 527-8101 x3508

FAX: (713) 524-5237

email: odegard@rice.edu

1 Introduction

We consider the problem of noise reduction by nonlinear wavelet processing.

In particular we focus on two applications of the recemtly developed theory related
to wavelet (soft) thresholding [2]. The model

[...rest deleted...]

The “@DELETE”, “QREFRESH”, and “QUPDATE” commands are part of the Broker’s Collec-
tor interface (described in Section D.2), which provides an additional command level on top of SOIF.
Currently, only the QUPDATE section is implemented. Within the @UPDATE section you can see in-
dividual SOIF objects, each of which contains a type, a Uniform Resource Locator (URL) [1], and a list
of byte-count delimited field name — field value pairs. Because the fields are byte-count delimited, they
can contain arbitrary binary data. Note also that SOIF allows Embed fields, corresponding to layers of
unnesting when summarizing objects (unnesting from a Compressed PostScript to PostScript file above).
 SOIF is based on a combination of the Internet Anonymous FTP Archives (IAFA) IETF Working
Group templates [8] and BibTeX [13]. Unlike IAFA templates, SOIF templates support streams of
objects, and attribute values with arbitrary content (spanning multiple lines and containing non-ASCII
characters).

In time we will make a specification for SOIF (and all of Harvest) available, which defines a set of
mandatory and recommended attributes for Harvest system components. For example, attributes for a
Broker describe the server’s administrator, location, software version, and the type of objects it contains.

26

A.l

Formal description of SOIF

The SOIF Grammar is as follows:

SOIF — OBJECT SOIF | OBJECT
OBJECT — @ TEMPLATE-TYPE { URL ATTRIBUTE-LIST }

ATTRIBUTE-LIST — ATTRIBUTE ATTRIBUTE-LIST | ATTRIBUTE

ATTRIBUTE — IDENTIFIER { VALUE-SIZE } DELIMITER VALUE
TEMPLATE-TYPE —— Alpha-Numeric-String

IDENTIFIER — Alpha-Numeric-String

VALUE —— Arbitrary-Data
VALUE-SIZE — Number
DELIMITER — :<tab>

A.2 List of common SOIF attribute names

Each Broker can support different attributes, depending on the data it holds. Below we list a set of the

most common attributes:

| ATTRIBUTE | DESCRIPTION
Abstract Brief abstract about the object.
Author Author(s) of the object.
Description Brief description about the object.
File-Size Number of bytes in the object.
Full-Text Entire contents of the object.

Gatherer-Host

Host on which the Gatherer ran to extract information from the object.

Gatherer-Name

Name of the Gatherer that extracted information from the object. (e.g.,
Full-Text, Selected-Text, or Terse).

Gatherer-Port

Port number on the Gatherer-Host that serves the Gatherer’s information.

Gatherer-Version

Version number of the Gatherer.

Keywords Searchable keywords extracted from the object.
Last-Modification-Time | The time that the object was last modified.
MD5 MD5 16-byte checksum of the object.

Refresh-Rate

How often the Broker attempts to update the content summary.

Time-to-Live

The time at which the content summary is no longer valid.

Title

Title of the object.

Type

The object’s type. Some example types are: Archive, Audio, Awk, Backup,
Binary, C, CHeader, Command, Compressed, CompressedTar, Configu-
ration, Data, Directory, DotFile, Dvi, FAQ, FYI, Font, FormattedText,
GDBM, GNUCompressed, GNUCompressedTar, HTML, Image, Internet-
Draft, MacCompressed, Mail, Makefile, ManPage, Object, OtherCode, PC-
Compressed, Patch, Perl, PostScript, RCS, README, RFC, SCCS, Shel-
1Archive, Tar, T¢l, Tex, Text, Troff, Uuencoded, WaisSource. For infor-
mation about the default Essence summarizer actions for these types, see
Appendix B.

Update-Time

The time that Gatherer updated the content summary for the object.

URL-References

Any URL references present within HTML objects.

27

A.3 Using the SOIF processing software

This section provides programmers with an introduction to using the SOIF library.

The Harvest system comes with a library interface to SOIF processing in harvest/src/common/-
template. To compile a program using the SOIF library, use the loader options -1template -lutil.
The SOIF processing library provides an interface for both parsing and printing SOIF objects, as well
as modifying SOIF objects. The SOIF objects are represented as linked lists of attribute-value pairs.
Functions are also provided to manipulate these linked lists. The print_template_body() function is useful
for writing Essence summarizers. The following is a partial list of the functions supplied in the library:

void init_parse_template file(FILE *input file)
Parses a SOIF template taking input from a file.

void init _parse template_string(char *input_string, int size)
Parses a SOIF template taking input from a memory buffer.

Template *parse_template()
Parses a SOIF template and returns a Template structure.

void finish parse_template()
Cleans up after parse_template().

int is_parse_end of_input()
Returns non-zero if the parsing routine has no more data to process.

Buffer *init print_template(FILE *output.file)
Print SOIF template to memory buffer or to a file if fp is not NULL. Returns NULL if printing to
a file; otherwise returns a pointer to the Buffer where the data is stored.

void print_template(Template *t)
Prints a SOIF template into a file or into a buffer. Must call an init_print routine before, and the
finish_print routine after.

void print_template_ header(Template *t)
Prints a SOIF template header into a file or into a buffer.

void print_template body(Template *t)
Prints a SOIF template body into a file or into a buffer.

void print._template_trailer(Template *t)
Prints a SOIF template trailer into a file or into a buffer.

void finish print template()
Clean up after print_template().

void add AVList(AVList *list, char *attr, char *value, int vsize)
Adds an attribute-value pair to the given attribute-value pair list.

AVPair *extract_AVPair(AVList *1list, char *attr)
Searches for the given attribute in the AVList. Does a case insensitive match on the attributes.
Returns NULL on error; otherwise returns the matching AVPair.

28

Example using Harvest SOIF processing software

The following example reads SOIF objects from stdin, parses them into the Attribute-Value pair list,
adds an Attribute-Value pair to the template’s list, and finally prints the modified SOIF template to

stdout:

/*
* print-template - Reads in templates from stdin and prints it to stdout.
%*
* Darren Hardy, University of Colorado - Boulder, February 1994
*/
#include <stdio.h>
#include <string.h>
#include "util.h"
#include "template.h"

static void add_print_time(t)
Template *t;

{
char buf [BUFSIZ];
sprintf (buf, "%d", time(NULL));
add_AVList(t->list, "Print-Time", buf, strlen(buf));
}
int main(argec, argv)
int argc;
char *argv[];
{

Template *template;
Buffer *b;

init_parse_template_file(stdin); /% Initialize parse */

while (template = parse_template()) { /* Read next Template */
add_print_time (template) ; /% Add new Attribute-Value */
b = init_print_template(NULL); /* Initialize print */
print_template(template) ; /* Print Template to Buffer */
fwrite(b->data, 1, b~>length, stdout); /% Buffer to stdout */
finish_print_template(); /* Clean up */
free_template(template); /* Clean up */

}

finish_parse_template(); /* Clean up */

exit (0);

29

B Essence Summarizer Actions

The following table provides a brief reference for how documents are summarized depending on their type.
These actions can be customized, as discussed in Section 5.1. Some summarizers are implemented as
UNIX programs while others are expressed as regular expressions; see Appendix C.4 for more information

about how to write a summarizer.

[TYPE | SUMMARIZER FUNCTION
Audio Extract file name
Bibliographic Extract author and titles
Binary Extract meaningful strings and manual page summary
C, CHeader Extract procedure names, included file names, and comments
Dvi Invoke the RawText summarizer on extracted ASCII text
FAQ, README | Extract all words in file
Font Extract comments
Mail Extract certain header fields
Makefile Extract comments and target names
ManPage Extract synopsis, author, title, etc., based on “man” macros
News Extract certain header fields
Object Extract symbol table
Patch Extract patched file names
Perl Extract procedure names and comments
PostScript Invoke the RawText summarizer on extracted ASCII text. Note: extracts
PostScript differently depending on which package generated the PostScript
(troff, TEX, etc.), providing much better results than other PostScript
extractors.
RawText Extract first 100 lines plus first sentence of each remaining paragraph
RCS Extract RCS-supplied summary
ShellScript Extract comments
SourceDistribution | Extract full text of README file and comments from Makefile and source
code files, and summarize any manual pages
SymbolicLink Extract file name, owner, and date created
Tex Invoke the RawText summarizer on extracted ASCII text
Troff Extract author, title, etc., based on “-man”, “-ms”, “me” macro packages,
or extract section headers and topic sentences.
Unrecognized Extract file name, owner, and date created.

30

C Gatherer Examples

The following examples install into /usr/local/harvest/gatherers by default (see Section 3).

The Harvest distribution contains several examples of how to configure, customize, and run Gatherers.
This section will walk you through several example Gatherers. The goal is to give you a sense of what
you can do with a Gatherer and how to do it. You needn’t work through all of the examples; each is
instructive in its own right.

To use the Gatherer examples, you need the Harvest binary directory in your path. For example,

% set path = (/usr/local/harvest/bin $path)

C.1 Example 1 - A simple Gatherer

This example is a simple Gatherer that uses the default customizations. The only work that the user
does to configure this Gatherer is to specify the list of URLs from which to gather (see Section 4.1).
To run this example, type:

% cd /usr/local/harvest/gatherers/example-1
% ./RunGatherer

To view the configuration file for this Gatherer, look at example-1.cf. The first few lines are variables
that specify some local information about the Gatherer (see Section 5.1.5). For example, each content
summary will contain the name of the Gatherer (Gatherer-Name) that generated it. The port number
(Gatherer-Port) that will be used to export the indexing information, as is the directory that contains
the Gatherer (Top-Directory). Notice that there is one RootNode URL and one LeafNode URL.

After the Gatherer has finished, it will start up the Gatherer daemon which will export the content
summaries. To view the content summaries, type:

% gather localhost 9111 | more
The following SOIF object should look similar to those that this Gatherer generates.

OFILE { http://rd.cs.colorado.edu/"schwartz/IRTF.html

Time-to-Live{7}: 9676800
Last-Modification-Time{1}: 0
Refresh-Rate{7}: 2419200
Gatherer—Name{25}: Example Gatherer Number 1
Gatherer-Host{22}: powell.cs.colorado.edu

Gatherer-Version{3}: 0.4
Update-Time{9}: 781478043

Type{4}: HTML

File-Size{4}: 2099

MD5{32}: c2fa35fd44a47634£39086652e879170
Partial-Text{151}: research problems

Mic Bowman
Peter Danzig
Udi Manber
Michael Schwartz
Darren Hardy
talk

talk

Harvest

talk

Advanced
Research Projects Agency

31

URL-References{625}:
ftp://ftp.cs.colorado.edu/pub/techreports/schwartz/RD.ResearchProblems.Jour.ps. 2
ftp://grand.central.org/afs/transarc.com/public/mic/html/Bio.html
http://excalibur.usc.edu/people/danzig.html
http://glimpse.cs.arizona.edu:1994/udi.html
http://rd.cs.colorado.edu/"schwartz/Home .html
http://rd.cs.colorado.edu/ hardy/Home.html
ftp://ftp.cs.colorado.edu/pub/cs/misc/schwartz/HPCC94.Slides.ps.Z
ftp://ftp.cs.colorado.edu/pub/cs/misc/schwartz/HPC94.Slides.ps.Z
http://xrd.cs.colorado.edu/harvest/Home.html
ftp://ftp.cs.colorado.edu/pub/cs/misc/schwartz/IETF.Jul94.Slides.ps .2
http://ftp.arpa.mil/Researchireas/NETS/Internet.html

Title{84}: IRTF Research Group on Resource Discovery
IRTF Research Group on Resource Discovery

Keywords{121}: advanced agency bowman danzig darren hardy harvest manber mic
michael peter problems projects research schwartz talk udi

}

Notice that although the Gatherer configuration file lists only 2 URLs (one in the RootNode section
and one in the LeafNode section), there are more than 30 content summaries in the Gatherer’s database.
The Gatherer expanded the RootNode URL into dozens of LeafNode URLs by recursively extracting the
links from the HTML file at the RootNode http://rd.cs.colorado.edu/harvest/. Then, for each LeafNode
given to the Gatherer, it generated a content summary for it as in the above example summary for
http://rd.cs.colorado.edu/ "~ schwartz/IRTF.himl.

The HTML summarizer will extract structured information about the Author and Title of the file. It
will also extract any URL links into the URL-References attribute, and any anchor tags into the Partial-
Tezt attribute. Other information about the HTML file such as its MD5 [15] and its size (File-Size) in
bytes are also added to the content summary.

C.2 Example 2 - Incorporating manually generated information

The Gatherer is able to “explode” a resource into a stream of content summaries. This is useful for files
that contain manually-generated information that may describe one or more resources, or for building a
gateway between various structured formats and SOIF (see Appendix A).

This example demonstrates an exploder for the Linux Software Map (LSM) format. LSM files contain
structured information (like the author, location, etc.) about software available for the Linux operating
system. A demo®* of our LSM Gatherer and Broker is available.

To run this example, type:

% cd /usr/local/harvest/gatherers/example-2
% ./RunGatherer

To view the configuration file for this Gatherer, look at ezample-2.cf. Notice that the Gatherer has
its own Lib-Directory (see Section 5.1.5 for help on writing configuration files). The library directory
contains the typing and candidate selection customizations for Essence. In this example, we’ve only
customized the candidate selection step. lib/stoplist.cf defines the types that Essence should not index.
This example uses an empty stoplisi.cf file to direct Essence to index all files.

The Gatherer retrieves each of the LeafNode URLs, which are all Linux Software Map files from the
Linux FTP archive tsz-11.mit.edu. The Gatherer recognizes that a “.Ism” file is LSM type because of the
naming heuristic present in lib/byname.cf. The LSM type is a “nested” type as specified in the Essence

34nttp://harvest.cs.colorado.edu/brokers/lsm/query.html

32

source code®®. Exploder programs (named TypeName.unnest) are run on nested types rather than the
usual summarizers. The LSM.unnest program is the standard exploder program that takes an LSM file
and generates one or more corresponding SOIF objects. When the Gatherer finishes, it contains one or
more corresponding SOIF objects for the software described within each LS file.

After the Gatherer has finished, it will start up the Gatherer daemon which will serve the content
summaries. To view the content summaries, type:

% gather localhost 9222 | more

Because tsz-11.mit.edu is a popular and heavily loaded archive, the Gatherer often won’t be able to
retrieve the LSM files. If you suspect that something went wrong, look in log.errors and log.gatherer to
try to determine the problem.

The following two SOIF objects were generated by this Gatherer. The first object is summarizes the
LSM file itself, and the second object summarizes the software described in the LSM file.

OFILE { ftp://¥sx-11.mit.edu/pub/linux/docs/linux~doc-project /man-pages-1.4.1lsm

Time-to-Live{7}: 9676800
Last-Modification-Time{97}: 781931042
Refresh-Rate{7}: 2419200
Gatherer-Name{25}: Example Gatherer Number 2
Gatherer-Host{22}: powell.cs.colorado.edu
Gatherer-Version{3}: 0.4

Type{3}: LSH

Update-Time{9}: 781931042
File-Size{3}: 848

MD5{32}: 67377£3ea214ab680892¢c82906081 caf

T

QFILE { ftp://ftp.cs.unc.edu/pub/faith/linux/man-pages-1.4.tar.gz
Time-to-Live{7}: 9676800

Last-Modification-Time{9}: 781931042

Refresh-Rate{7}: 2419200

Gatherer-Name{25}: Example Gatherer Number 2
Gatherer-Host{22}: powell.cs.colorado.edu
Gatherer-Version{3}: 0.4

Update-Time{9}: 781931042

Type{16}: GNUCompressedTar

Title{48}: Section 2, 3, 4, 5, 7, and 9 man pages for Linux
Version{3}: 1.4

Description{124}: Man pages for Linux. Mostly section 2 is complete. Section
3 has over 200 man pages, but it still far from being finished.
Author{27}: Linux Documentation Project

AuthorEmail{i1}: DOC channel

Maintainer{9}: Rik Faith

MaintEmail{16}: faithQcs.unc.edu

Site{45}: ftp.cs.unc.edu
sunsite.unc.edu

tsx-11.mit.edu

Path{94}: /pub/faith/linux
/pub/Linux/docs/linux-doc-project/man-pages
/pub/linux/docs/linux~doc~project

File{20}: man-pages-1.4.tar.gz
FileSize{4}: 170k

CopyPolicy{47}: Public Domain or otherwise freely distributable
Keywords{10}: man

pages

Entered{24}: Sun Sep 11 19:52:068 1994
EnteredBy{S}: Rik Faith
CheckedEmail{16}: faith@cs.unc.edu
T

35The harvest/src/gatherer/essence/unnest.c file contains the definitions of nested types. To specify that a type is
nested, follow the directions at the top of the unnest.c file.

33

We’ve also built a Gatherer that explodes about a half-dozen index files from various PC archives
into more than 25,000 content summaries. Each of these index files contain hundreds of a one-line
descriptions about PC software distributions that are available via anonymous FTP. We have a demo®®
available via the Web.

C.3 Example 3 - Customizing type recognition and candidate selection

This example demonstrates how to customize the type recognition and candidate selection steps in the
Gatherer (see Section 5.1). This Gatherer recognizes World Wide Web home pages, and is configured
to only collect indexing information from these home pages.

To run this example, type:

% cd /usr/local/harvest/gatherers/example-3
% ./RunGatherer

To view the configuration file for this Gatherer, look at ezample-3.cf. As in Appendix C.2, this
Gatherer has its own library directory that contains a customization for Essence. Since we’re only
interested in indexing home pages, we need only define the heuristics for recognizing home pages. As
shown below, we can use URL naming heuristics to define a home page in lib/byurl.cf. We’ve also added
a default Unknown type to make candidate selection easier in this file.

HomeHTML “http:.*/$

HomeHTML “http:.*[hH]ome\ .html$
HomeHTML “http:.*[hH]ome [pP]age\ .html$
HomeHTHML “http:.*[wWlelcome\.html$
HomeHTML “http:.*/index\ .html$

The lib/stoplist.cf configuration file contains a list of types not to index. In this example, Unknown is
the only type name listed in stoplist.configuration, so the Gatherer will only reject files of the Unknown
type. You can also recognize URLs by their filename (in byname.cf) or by their content (in bycontent.cf
and magic); although in this example, we don’t need to use those mechanisms. The default HomeHTHL . sum
summarizer summarizes each Home HTML file.

After the Gatherer has finished, it will start up the Gatherer daemon which will serve the content
summaries. You’ll notice that only content summaries for HomeHTML files are present. To view the
content summaries, type:

% gather localhost 9333 | more

We have a demo®” that uses a similar customization to collect structured indexing information from
over 11,000 Home Pages around the Web.

C.4 Example 4 - Customizing type recognition and summarizing

This example demonstrates how to customize the type recognition and summarizing steps in the Gatherer
(see Section 5.1. This Gatherer recognizes two new file formats and summarizes them appropriately.

To view the configuration file for this Gatherer, look at ezample-4.cf. As in the examples in C.2 and
C.3, this Gatherer has its own library directory that contains the configuration files for Essence. The
Essence configuration files are the same as the default customization, except for lib/byname.cf which
contains two customizations for the new file formats.

36http://harvest.cs.colorado.edu/brokers/pcindex/query.html
37nttp://harvest.cs.colorado.edu/brokers/vww-home-pages/query . html

34

Using regular expressions to suminarize a format

The first new format is the “ReferBibliographic” type which is the format that the refer program uses to
represent bibliography information. To recognize that a file is in this format, we’ll use the convention that
the filename ends in “.referbib”. So, we add that naming heuristic as a type recognition customization.
Naming heuristics are represented as a regular expression against the filename in the lib/byname.cf file:

ReferBibliographic ~.*\.referbib$
Now, to write a summarizer for this type, we’ll need a sample ReferBibliographic file:

%A A. S. Tanenbaum

%T Computer Networks
%I Prentice Hall

%C Englewood Cliffs, NJ
%D 1988

Essence summarizers extract structured information from files. One way to write a summarizer is
by using regular expressions to define the extractions. For each type of information that you want to
extract from a file, add the regular expression that will match lines in that file to lib/quick-sum.cf. For
example, the following regular expressions in lib/quick-sum.cf will extract the author, title, date, and
other information from ReferBibliographic files:

ReferBibliographic Author “UAL \t]+.%$
ReferBibliographic City “%CL \tl+.*$
ReferBibliographic Date “UDL \t]+.%$
ReferBibliographic Editor “UEL \t1+.x$
ReferBibliographic Comments “%HL \t1+.*$
ReferBibliographic Issuer “UIL \t]+.#$
ReferBibliographic Journal “WIL \t1+.%$
ReferBibliographic Keywords “UKL \t]+.x$
ReferBibliographic Label “WLL \t]+.*$
ReferBibliographic Number “UNL \t]+.%$
ReferBibliographic Comments ~%0L \tl+.*$
ReferBibliographic Page-Number “UPL \t]l+.%$
ReferBibliographic Unpublished-Info “%RL \tl+.*$
ReferBibliographic Series-Title “%SL \tl+.%$
ReferBibliographic Title “ATL \t]+.*$
ReferBibliographic Volume “UVE \tl+.%$
ReferBibliographic Abstract “%XL \t]+.%$

The first field in lb/quick-sum.cf is the name of the type. The second field is the Attribute under
which to extract the information on lines that match the regular expression in the third field.
Using programs to summarize a format

The second new file format is the “Abstract” type, which is a file that contains only the text of a paper
abstract (a format that is common in technical report FTP archives). To recognize that a file is written
in this format, we’ll use the naming convention that the filename for “Abstract” files ends in “.abs”. So,
we add that type recognition customization to the lib/byname.cf file as a regular expression:

Abstract ~.*%\.abs$

35

Another way to write a summarizer is to write a program or script that takes a filename as the first
argument on the command line, extracts the structured information, then outputs the results as a list of
SOIF attribute-value pairs (see Appendix A.3 for further information on how to write a program that
can produce SOIF). Summarizer programs are named TypeName.sum, so we call our new summarizer
Abstract.sum. Remember to place the summarizer program in a directory that is in your path so that
Gatherer can run it. You'll see below that Abstract.sumis a Bourne shell script that takes the first 50
lines of the file, wraps it as the “Abstract” attribute, and outputs it as a SOIF attribute-value pair.

#!/bin/sh

#

Usage: Abstract.sum filename
#

head -50 "$1" | wrapit "Abstract"

Running the example

To run this example, type:

% cd /usr/local/harvest/gatherers/example-4
% ./RunGatherer

After the Gatherer has finished, it will start up the Gatherer daemon which will serve the content
summaries. To view the content summaries, type:

% gather localhost 9444 | more

36

D The Broker’s Query Manager and Collector Interfaces

This section details the Broker query interface and how we implemented the WWW interface to the
Broker. It also describes the Collector interface.

D.1 Query Manager interface description

All communication with the Broker is parsed according to the same grammar. This includes user queries,
administrative commands, and bulk transfers. A bulk transfer occurs when a Brokers sends a collection
request to another Broker. Both user queries and administrative commands are sent by users via the
WWW interface. All keywords in the interface grammar are marked with a ’#’ as the first character.

The grammar is as follows:

MESSAGE
USER-MESSAGE
BULK-MESSAGE

ADMIN-MESSAGE
ADMIN-PASSWD
ADMIN-COMMAND

QUERY
EXPRESSION
RELATION-OP
PRIMARY
CLAUSE
SELECT-OP
LOGICAL-OP

T A g

FLAWD

FLAG

USER-MESSAGE | ADMIN-MESSAGE | BULK-MESSAGE
#USER FLAGS #END QUERY

#BULK FLAGS #END QUERY

#ADMIN ADMIN-PASSWD ADMIN-COMMAND
F#password ID

#set ID ID | #collection |

#clean | #full-index |

#incremental-index | #open-log |

#close-log | #flush-log |

#add-log ID | #rem-log ID |

#add-object ID | #rem-object-path ID |
#rem-object-query QUERY

#restart | #shutdown

#allb | EXPRESSION

RELATION-OP | RELATION-OP LOGICAL-OP EXPRESSION
PRIMARY | not PRIMARY

CLAUSE | (EXPRESSION)

ID | ID SELECT-OP ID

exact | regexp | less-than | greater-than

and | or | except

FLAG FLAGS | FLAG

shortflag | #index ID | #index ID ID

More information about the Collector operations and corresponding Gatherer commands is available
in harvest/src/gatherer/gatherd/NOTES.

37

D.2 Collector interface description

The Broker retrieves indexing information from Gatherers or other Brokers through its Collector inter-
face. A list of collection points is specified in the Collection.conf configuration file. This file contains a
collection point on each line, with 4 fields. The first field is the host of the remote Gatherer or Broker,
the second field is the port number on that host, the third field is the collection type, and the forth field

is the query filter or —- if there is no filter.
The Broker supports various types of collections as described below:

| Tyre No. | REMOTE PROCESS | DESCRIPTION | COMPRESSED
0 Gatherer Full collection each time No
1 Gatherer Incremental collections No
2 Gatherer Full collection each time Yes
3 Gatherer Incremental collections Yes
4 Broker Full collection each time No
5 Broker Incremental collection No
6 Broker Full collection based on a query No
7 Broker Incremental collection based on a query No

The following is an example list of collection points, which incrementally collects compressed infor-
mation from 3 Gatherers, and collects information from 1 Broker using a query filter:

#

Collection.conf - Harvest Broker Collection Configuration File

#

bruno.cs.colorado.edu 8511 3 --
canopus.cse.psu.edu 8321 3 --
excalibur.usc.edu 8321 3 —-
bruno.cs.colorado.edu 8507 6 —-Harvest

D.3 World Wide Web interface to the Broker

To allow popular Web browsers to easily interface with the Broker, we implemented a World Wide Web
interface to the Broker’s query manager and administrative interfaces. This WWW interface, which
includes several HTML files and a few programs that use the Common Gateway Interface3® (CGI),

consists of the following:

e HTML files that use Forms®® support to present a graphical user interface (GUI) to the user;

e CGI programs that act as a gateway between the user and the Broker; and

e Help files for the user.

Users go through the following steps when using a Broker to locate information:

1. The user issues a query to the Broker.

2. The Broker processes the query, and returns the query results to the user.

3. The user can then view content summaries from the result set, or access the URLs from the result -

set directly.

38nt4p://hoohoo.ncsa.uiuc.edu/cgi/overview.html
3%http://www.ncsa.uiuc. edu/SDG/Software/Mosaic/Docs/£ill-out-forms/overview. html

38

HTML files for graphical user interface

CreateBroker creates some HTML files to provide GUIs to the user:

query.html
Contains the GUI for the query interface. CreateBroker will install different query.html files
for Glimpse and WAIS, since each subsystem requires different defaults and supports different
functionality (e.g., WAIS doesn’t support approximate matching like Glimpse). This is also the
“home page” for the Broker and a link to this page is included at the bottom of all query results.

admin.himl
Contains the GUI for the administrative interface. This file is installed into the admin directory
of the Broker.

CGI programs

When you install the WWW interface (see Section 4.2), a few programs are installed into your HT'TP
server’s cgi-bin directory:

BrokerQuery
This program takes the submitted query from query.himl, and sends it to the specified Broker. It
then retrieves the query results from the Broker, formats them in HTML, and sends the result set
in HTML to the user. The result set contains links to the Broker’s home page, links to the content
summaries of the matched objects, and a link to the Harvest home page.

DisplayObject
This program displays the content summaries from the Broker. It takes the SOIF file from the
Broker, formats it in HTML, then returns the HTML to the user. This HTML page contains a
link to the soifhelp.html page, a link to the URL of the object, and a link to the Harvest home
page.

BrokerAdmin
This program will take the submitted administrative command from admin.html and send it to

the appropriate Broker. It retrieves the result of the command from the Broker and displays it to
the user.

Help files for the user

The WWW interface to the Broker includes a few help files written in HTML. These files are installed
on your HTTP server in the /brokers directory when you install the broker (see Section 4.2):

queryhelp.hitml
Provides a tutorial on constructing Broker queries, and on using the Glimpse and WAIS query.html
forms. gquery.himl has a link to this help page.

adminhelp.html .
Provides a tutorial on submitting Broker administrative commands using the admin.html form.
admin.html has a link to this help page.

soifhelp.himl
Provides a brief description of SOIF. Each content summary that the user displays will have a link
to this help page.

39

Index

--allowlist, 15
--full-text, 16
<LeafNodes>, see Gatherer, LeafNodes
<RootNodes>, see Gatherer, RootNodes

admin.hitml file, 18, 38

admainhelp.himl file, 38

Annotating gathered information, see Manually
generated information

Archie, 1

Awudio summarizing, 29

autoconf, 4

automatic database, 17

Bibliographic summarizing, 29
bin directory, 14
Binary summarizing, 29
Broker, 8-11
administration, 18-20, 22
admin.html file, 38
adminhelp.html file, 38
BULK update interface, 22
collector interface, 37
creating
CreateBroker program, 8
incremental vs. batch indexing, 21
indexing interface
IND Destroy_Obj routine, 21
IND_Index Flush routine, 21
IND_-Index Full routine, 21
IND Index Incremental routine, 21
IND_Index_Start routine, 21
IND_Init _Flags routine, 22
IND New Object routine, 21
IND.Set_Flags routine, 22
IND_config routine, 22
IND_do_query routine, 22
IND_ initialize routine, 22
integrating index/search back-end, 21
query manager interface, 36
query processing, 22
querying, 9
approximate matches, 10
Boolean combinations of keywords, 9
case sensitivity, 10
default query settings, 11
examples, 9
HTML interface, 38
match count limits, 9
matched lines vs. entire records, 9

40

multiple word matching, 10
options selected by menus or buttons, 10
partial word matching, 10
query.html file, 38
queryhelp.html file, 38
regular expressions, 9, 10
result set presentation, 10
Simple keyword, 10
structured queries, 9
whole word matching, 10
using different index/search engines, 20
using WAIS as an indexer, 21
WWW interface, 37
broker.conf file, 18
BrokerAdmin program, 38
BrokerQuery program, 38
bycontent.cf file, 14
byname.cf file, 14
byurl.cf file, 14

C summarizing, 29
Cache, 12-13
cached program, 12
CachedLynx program, 12
CachedMosaic program, 12
ftpget.pl program, 12, 13
NCSA Mosaic bug, 12
proxy interface, 12
remote instrumentation interface, 22
RunCache program, 12
running a hierarchy, 22
cache-liburl directory, 14
cached program, 23
CHeader summarizing, 29
cleandb program, 16
Commercial WAIS, 8
Common Gateway Interface (CGI), 37
Configuration, 4
CreateBroker program, 8, 18, 21, 38
cron program, 6, 14
Customizing, see Gatherer, customizing

data directory, 14
DisplayObject program, 38
Dwvt summarizing, 29

Essence, 14, 16, 27, 31, 33
candidate selection, 15
configuration files

bycontent.cf file, 14

byname.cf file, 14
byurl.cf file, 14
magic file, 14
quick-sum.cf file, 14
stoplist.cf file, 14
presentation unnesting, 15
summarizer actions, 29
summarizing, 15
type recognition, 15
using programs to summarize, 34

template2db program, 16, 18

wrapit program, 16
Gatherer program, 6
GathName.cf file, 14
gdbmprint program, 18
Glimpse, 8, 9, 20, 21

tuning, 20
glimpseindex program, 20
glimpseserver program, 20
gunzip program, 15

using regular expressions to summarize, 33
Hierarchical cache, see Cache, running a hierar-

chy
HTTP v1.0 compliant, 6

FAQ summarizing, 29
file program, 15
Font summarizing, 29
freeWAIS, 8

Full text indexing, 16

INDEX.gdbm file, 14

Installation, 4
individual components, 4
supported platforms, 4

Internet Research Task Force, i

IRTF, see Internet Research Task Force

gather program, 6, 24
gatherd program, 6
gatherd.cf file, 14
gatherd.log file, 14
Gatherer, 5-7
access control, 6
customizing, 14-16
candidate selection, 15
configuration file, 16
presentation unnesting, 15, 32
summarizing, 15
type recognition, 15
Essence, 14-16
examples, 30-35
customizing type recognition and candi-
date selection, 33
customizing type recognition and summa-

lib directory, 14
local gatherering, 18
localization, 4
log.errors file, 14
log.gatherer file, 14

magic file, 14

Mail summarizing, 29

Makefile summarizing, 29

ManPage summarizing, 29

manual database, 17

Manually generated information, 16, 31
MAX_ENUM #define, 5

rizing, 33 mergedb program, 16
incorporating manually generated infor- mirror program, 7
mation, 31 mkindex program, 16

simple gatherer, 30 mktemplate program, 16

Gatherer program, 6
LeafNodes, 5, 16
~ periodic gathering, 6

RootNodes, 5, 16
enumeration limits, 5

tools
cleandb program, 16
gdbmprint program, 18
mergedb program, 16
mkindex program, 16
mktemplate program, 16
rmbinary program, 16
RunGatherd program, 7
RunGatherer program, 6

Nebula, 8, 20
News summarizing, 29

Object summarizing, 29

Patch summarizing, 29

PC archive indexer, 33

Perl summarizing, 29

Platforms, 4

PostSeript summarizing, 29
prefic Make variable, 4
PRODUCTION.gdbm file, 14, 17

query.html file, 38

41

queryhelp.himl file, 38
quick-sum.cf file, 14

RawText summarizing, 29

RCS summarizing, 29

README summarizing, 29

ReferBibliographic example summarizer, 34

Regular expressions, see Broker, querying, reg-
ular expressions

remote gatherering, 18

Replicator, 23

rmbinary program, 16

Robots, 6

RunBroker program, 8

RunGatherd program, 7, 14

RunGatherer program, 6, 14

ShellSeript summarizing, 29
SOIF, see Summary Object Interchange Format
soifhelp.html file, 38
SourceDistribution summarizing, 29
Spelling errors, see Broker, querying, approxi-
mate matches
stoplist.cf file, 14
Summary Object Interchange Format, 5, 7, 8,
15, 16, 19, 2428, 30, 38
common attribute names, 26
formal description, 26
processing software, 27
example, 28
add_AVList routine, 27
extract_AVPair routine, 27
finish parse_template routine, 27
finish print_template routine, 27
init_parse_template._file routine, 27
init_parse_template_stringroutine, 27
init_print._template routine, 27
is_parse_end _of _input routine, 27
parse_template routine, 27
print._template body routine, 27
print_template header routine, 27
print_template_trailer routine, 27
print_template routine, 27
wrapit program, 16
SymbolicLink summarizing, 29

template2db program, 16, 18
Tex summarizing, 29

tmp directory, 14

Troff summarizing, 29

Unrecognized summarizing, 29

42

WAIS, 1, 8, see Broker, using WAIS as an in-
dexer

waisindex program, 21

waisparse program, 21

waissearch program, 21

waisserver program, 21

WORKING.gdbm file, 14, 17

World Wide Web Worm, 1

wrapit program, 16

WWW Home pages indexer, 33

WWWW, see World Wide Web Worm

